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Hamiltonian averaging in soliton-bearing systems with a periodically varying dispersion
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Optical pulse dynamics in dispersion-managed fiber lines is studied using a combination of a Lagrangian
approach and Hamiltonian averaging. By making self-similar transform in the Lagrangian and assuming in the
leading order a bell-shaped pulse dynamics, we reduce the original system to a nonautonomous Hamiltonian
system with two variables. Subsequent Hamiltonian averaging gives a function of two variables whose extrema
correspond to periodic pulses. To describe a fine structure of the pulse tails, we further develop Hamiltonian
averaging using the complete set of Gauss-Hermite functions and also applying averaging in the spectral
domain.@S1063-651X~99!50504-7#

PACS number~s!: 42.65.Tg, 42.81.Dp
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I. INTRODUCTION

Impressive progress in soliton-based optical data tra
mission has clearly shown how the fundamental soli
theory can be successfully exploited in important practi
applications such as high-bit-rate optical communicatio
Practical achievements have stimulated further studies
soliton dynamics in media with varying coefficients. In th
Rapid Communication, we present general Hamiltonian
proaches to describe average envelope soliton propagati
a medium with large periodic variations of dispersion. As
specific practical application, we focus here on dispersi
managed~DM! soliton transmission. The traditional path
averaged optical soliton preserves its shape during prop
tion by compensating the fiber dispersion throu
nonlinearity; only the pulse power oscillates due to perio
amplification of the pulse to compensate for the fiber lo
Rapid oscillations of the power can be averaged out and,
result, the slow pulse dynamics in the traditional transm
sion lines with constant dispersion is governed by the n
linear Schro¨dinger equation~NLSE!. The DM soliton that
occurs in the system with large variations of the dispers
differs substantially from the fundamental soliton@1–18#.
There are two scales in the DM systems: the first~fast dy-
namics! corresponds to rapid oscillations of the pulse wid
and power due to periodic variations in the dispersion a
periodic amplification; the second~slow dynamics! occurs
due to the combined effects of nonlinearity, residual disp
sion and pulse chirping. To describe slow dynamics of
DM soliton one should average the propagation equa
over fast oscillations. The small parameter in the probl
~and throughout the paper! is e5L/ZNL , with L as a com-
pensation period andZNL as a characteristic nonlinear sca
Overall, the pulse dynamics in these systems is rather c
PRE 591063-651X/99/59~4!/3843~4!/$15.00
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plicated and typically depends on many system parame
Different theoretical approaches have been developed to
scribe properties of DM soliton, which include interestin
numerical methods@1–4#, a variational approach@5–11#, a
root-mean-square momentum method@11,18#, multiscale
analysis@12–14#, different averaging methods@15,16#, in-
cluding averaging in the spectral domain@5,6#, and an ex-
pansion of the DM soliton on the basis of the chirped Gau
Hermite functions @16,17#. Because of the practica
importance of the problem, it is of evident interest to deve
different analytical methods to describe the properties of
DM soliton. A variety of complimentary mathematical met
ods can be advantageously used to find an optimal and
nomical description of any specific practical application.
this paper we present an averaging approach based on a
bination of the Lagrangian approach and Hamiltonian av
aging.

II. BASIC EQUATIONS IN THE LAGRANGIAN FORM
AND THE TWO-PDE APPROXIMATION

The optical pulse dynamics is governed by the followi
partial differential equation~PDE! with the periodic coeffi-
cients d(z) and c(z) ~we assume here that both have t
same period!.

iAz1d~z!Att1ec~z!uAu2A50, ~1!

where we are using notations of@11#, but setting aside a
small parametere in c(z) with newc(z) to be of the order of
one, and arbitraryd(z)5d̃1^d& (^d̃&50). The distance is
normalized by the compensation periodL. The action inte-
gral of this equation is given by
3843 ©1999 The American Physical Society
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J5E dt dzH i

2
~AĀz2ĀAz!1d~z!uAtu22e

c~z!

2
uAu4J .

By introducing the transformation fromA to Q,

A5
N

AT~z!
Q~j,z!expF i

M ~z!

T~z!
t2G , j5

t

T~z!
,

which accounts for the fast~dominant! self-similar dynam-
ics, we obtain a new action integral:

J5E dt dzH i

2 S 2
tTz

T3 @QQj* 2Q* Qj#

1
1

T
@QQz* 2Q* Qz# D1

t2

T
uQu2S M

T D
z

2e
N2c~z!

2T2 uQu4

1
d~z!

T3 ~ uQju214M2t2uQu21 i2Mt@QQj* 2Q* Qj# !J .

~2!

Assuming that]jArg(Q)50 and introducing new integra
tion variables, we obtain an averaged action~here C1
5* uQju2dj/* uQu2dj andC25* uQu4dj/* uQu2dj)

J̄5E dzH d~z!S C1

T2 14M2D2e
N2c~z!C2

2T
22MTzJ .

Now, observing that the Lagrangian has the formL(M ,T)
5H(M ,T)22MTz which can be easily rescaled toL(p,q)
5H(p,q)2pq̇ we get forp and q the Hamiltonian system
@7# with the Hamiltonian

H5d~z!Fp2

2
1

1

2q2G2e
N2c~z!

q
.

III. HAMILTONIAN AVERAGING

We will carry out the averaging procedure while prese
ing the Hamiltonian structure. The minima and maxima
the averaged Hamiltonian function will correspond to t
fixed points. Consider the HamiltonianH5d(z)H0(p,q)
1eH1(p,q,z), which is integrable ife50. Introducing new
variables (I ,j), whereI 5H0(p,q) andj is chosen so as to
keep the Hamiltonian structure, we obtain the new Ham
tonian H5d(z)I 1eH̃1(I ,j,z), which takes the formH

5eH̃1„I ,h1R0(z),z… after the transformationj5R0(z)
1h „dR0 /dz5d̃(z)…. The critical points of the average
HamiltonianH̄(I ,h) give the first approximation to the fixe
points. We now compute the above quantities for the con
ered problem. We look for the transformation given impl
itly by

q5]pS~ I ,p!, j52] IS~ I ,p!, ~3!

where S(I ,p) is a generating function, so that 2I 5p2

1q22. Solving the above equality forq, q51/A2I 2p2, and
using the first equation in Eqs.~3!, we obtain a generating
function S(I ,p)5arcsin@p/A2I #. Then the second equatio
-
f

l-

d-

in Eqs.~3! gives the relationj5p/(2IA2I 2p2). Now, solv-
ing the equations forp andq, we obtain

p252I
~2I j!2

11~2I j2!
, q25

11~2I j!2

2I
. ~4!

The transformed Hamiltonian takes the form

H~ I ,j,z!5d~z!I 2eN2c~z!
A2I

A11~2I j!2
.

Carrying out the transformj5h1R0(z) we finally get

H~ I ,h,z!5^d&I 2eN2c~z!
A2I

A11@2I „h1R0~z!…#2
.

The problem is now reduced to the search for minima a
maxima of the averaged Hamiltonian function

H̄~ I ,h!5^d&I 2eN2E
0

1 A2Ic~z!dz

A11@2I „h1R0~z!…#2
. ~5!

Note that the last integral in Eqs.~4! can be evaluated ex
plicitly @18# if c(z)5const andd is a piecewise constant.

IV. HAMILTONIAN AVERAGING OF THE PDE

The previous analysis proves to be useful in determin
the averaged quantities that relate to the width and pu
chirp, without determining the pulse profile. This must
assumed to compute the constantsC1 ,C2 , which arise in the
formula for the averaged actionJ̄. In this section we take
the next step in our analysis by averaging the PDE in
general case, while keeping in the leading order the s
similar structure obtained in the preceding section. To
this, we expand~see@16#! a functionQ(j,z) using a com-
plete set of orthogonal chirped Gauss-Hermite functio
Q(j,z)5(nbn(z) f n(j) with ( f n)jj2j2f n5lnf n , ln521
22n, where normalized f n(x)5exp(2x2/2)Hn(x)/
(A2nn!Ap). Here Hn(x) is the nth-order Hermite polyno-
mial and the coefficientsbn(z) in the expansion can be foun
by scalar multiplication withf n . Because the dependence
Q(j,z) on j is now determined by known functionsf n(j),
after integrating overj the LagrangianL in J5*L dz is

L5 (
n50

` S i

2 Fbn

dbn*

dz
2b*

dbn

dz G2
d~z!

T2 lnubnu2D
1(

n,m

` FT2
d

dzS M

T D14M2d~z!2
d~z!

T2 Gbnbm* Sn,m

2e
N2c~z!

2T (
n,m,l ,k

bnbmbl* bk* Vn,m,l ,k

1
i

2
@Tz24Md~z!# (

n50

`

~bnbn12* 2bn12bn* !~n12!.

~6!

Sn,m5*2`
1` f nx2f mdx, Vm,l ,k,m5*2`

1` f nf mf l f kdx. Any Sn,m

andVm,l ,k,n can be found in explicit form@16#. Note that the
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derived exact expression is reduced to the Lagrangian f
the previous section under the assumptionbn(z)5const and
(n50

` (bnbn12* 2bn12* bn) (n12)50 @which corresponds to
the condition]jArg(Q)50#. Higher order non-self-similar
corrections to the DM pulse dynamics are accounted thro
the functionsbn . To preserve in the leading order the se
similar structure of the pulse core, we now choose the fu
tions T(z) andM (z) to be periodic solutions of

dT

dz
54d~z!M ;

dM

dz
5

d~z!

T3 2e
c~z!N2

T2 . ~7!

In this case, the LagrangianL takes the form

L5 (
n50

` S i

2 Fbn

dbn*

dz
2bn*

dbn

dz G2
d~z!

T2 lnubnu2D
2

eN2c

T (
n,m

`

bnbm* Sn,m

2
eN2c

2T (
n,m,l ,k

bnbmbl* bk* Vn,m,l ,k .

This means that we have reduced the periodic problem
the original PDE~1! to an infinite set of ordinary differentia
equations with periodic boundary conditions, determin
the dynamics ofbn . The fast decay ofbn in n makes this
basis very useful in practical applications. By introducing t
notationbn5Fn exp@2iQn#5Apn exp@2iqn#, the Lagrangian
can be written in a usual formL(q1 ,p1 ,q2 ,p2 , . . . ,z)
5H(q1 ,p1 ,q2 ,p2 , . . . ,z)2(nq̇npn , where

2H5 (
n50

d~z!

T2 lnpn1
eN2c

T (
n,m

`

ApnpmSn,m cos~qm2qn!

1
eN2c

2T (
n,m,l ,k

ApnpmplpkVn,m,l ,k

3cos~ql1qk2qm2qn!.

Applying the procedure developed in the previous section
present the Hamiltonian as

H~q1 ,p1 ,q2 ,p2 , . . . ,z!

5H~q,p!5
d~z!

T2 H0~q,p!1eH1~q,p,z!

52
d~z!

T2 (
n50

lnpn1eH1~q,p,z!,

which is integrable ife50. Namely, ife50, pn5const and
qn52ln*zd(s)ds/T2(s). After the transformation qn
52lnR(z)1hn with R defined from dR/dz5d(z)/T2

2^d/T2&, the Hamiltonian takes the form

H52 K d~z!

T2 L (
n50

lnpn1eH̃1„pn ,hn2lnR~z!,z….

Extrema of this function give a profile of the DM soliton. I
many practical problems it is enough to take into acco
m

h

c-

or

g

e

e

t

only the few first terms in the above expansion of the D
pulse in the basis of the Gauss-Hermite functions.

V. AVERAGING OF THE PDE
IN THE FREQUENCY DOMAIN

In this section we present an alternative way to aver
Eq. ~1! by going into the frequency domain. The averag
equation in the frequency domain has been derived in@5,6#.
This approach allows one to decompose DM pulse dynam
in the fast evolution of the phase and a slow evolution of
amplitude. The shape of the DM soliton is then given by
nonlocal integral equation. We present here a compact f
of the averaged equation that we hope could be useful
practical numerical simulations.

Following @5,6# we take the Fourier transform in Eq.~1!
and account for the fast oscillations of the phase as

A~ t,z!5E
2`

1`

dv q~v,z!exp@2 ivt2 iv2R0~z!#; ~8!

heredR0(z)/dz5d̃(z) and ^R0&50. The aim of this trans-
formation is to eliminate the large coefficientd̃ from Eq.~1!.
In the new variables the propagation equation takes the f
iqz5dH/dq* with the HamiltonianH given by

H5^d&E
2`

`

v2uq~v,z!u2dv2e
c~z!

2 E
2`

`

dv1dv2dv3dv4

3d~v11v22v32v4!eiR0DVqv1
qv2

qv3
* qv4

* ;

hereDV5v1
21v2

22v3
22v4

2. To get rid of thed function
we introduce the linear change of variables 2l 15v21v1 ,
2l 25v41v3 , 2m15v22v1 , 2m25v42v3 ; then the
Hamiltonian takes the form

H5^d&E
2`

`

m2uq~m,z!u2dm2ec~z!E
2`

`

dl dm1dm2

3ei2R0~m1
2
2m2

2
!q~ l 2m1!q~ l 1m1!q* ~ l 2m2!q*

3~ l 1m2!.

Though the main results here are formulated in a gen
form and can be used for arbitrary dispersion maps, we
lustrate the procedure by considering a two-step losslesc
51) map:d(z)5d11^d& if 0 ,z,L1 , andd(z)5d21^d&
for L1,z,L. Hered1L11d2(L2L1)50 and parameterm
5d1L1 is a characteristic of the strength of the map. Sin
q(v,z) varies slowly, in the first approximation we can in
tegrate over the period the above equation placingq outside
of the integrals inz @5,6#. This makes it possible@5,6# to
explicitly express a field at the end of the section as a fu
tion of the input field~i.e., to solve the mapping problem!
and to describe an average dynamics. Carrying out this
cedure we get a Hamiltonian integrodifferential equation
the spectral domain describing the slow evolution ofq(v,z)
@5,6#,
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FIG. 1. Shape of the DM soliton is shown i
the logarithmic scale: true periodic solution o
Eq. ~1! ~solid line!, solution of the averaged Eq
~9! ~dashed line!, and five-mode approximation
based on the Gauss-Hermite expansion~dotted
line!. Hered(z)56510.15.
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]q~z,v!

]z
5

dH

dq*
5v2^d&q~z,v!

2eE dv1dv2

sin@m~v2v1!~v2v2!#

m~v2v1!~v2v2!

3qv1
qv2

1qv11v22v* ,

with the Hamiltonian

H5^d&E v2uqu2dv2eE dl dm1dm2q~ l 1m1!

3q~ l 2m1!q* ~ l 1m2!q* ~ l 2m2!
sin@m~m1

22m2
2!#

m~m1
22m2

2!
.

In the limit m50 we just get the Fourier transform of th
NLSE. The soliton in this case has the well-known se
n,

,

t.

n

n

p

h

shape. The general DM soliton solution has the fo
q(v,z)5exp(ikz)F(v) with the shapeF(v) given by the
equation

~k1v2^d&!F~v!5eE dv1dv2

sin@m~v2v1!~v2v2!#

m~v2v1!~v2v2!

3Fv1
Fv2

Fv11v22v* . ~9!

A typical solution of this equation~and comparisons with
numerics and with the expansion using Gauss-Hermite fu
tions! is presented in Fig. 1. Note that the solution to th
equation does exist in the region of zero and normal (^d&
,0), in agreement with the observations in@2#.

In conclusion, we have developed Hamiltonian averag
to describe the slow~average! dynamics of the dispersion
managed optical pulse in fiber transmission lines. Deriv
equations described both the Gaussian core and the expo
tially decaying oscillating tails of DM soliton.
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