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Hamiltonian averaging in soliton-bearing systems with a periodically varying dispersion
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Optical pulse dynamics in dispersion-managed fiber lines is studied using a combination of a Lagrangian
approach and Hamiltonian averaging. By making self-similar transform in the Lagrangian and assuming in the
leading order a bell-shaped pulse dynamics, we reduce the original system to a nonautonomous Hamiltonian
system with two variables. Subsequent Hamiltonian averaging gives a function of two variables whose extrema
correspond to periodic pulses. To describe a fine structure of the pulse tails, we further develop Hamiltonian
averaging using the complete set of Gauss-Hermite functions and also applying averaging in the spectral
domain.[S1063-651X%99)50504-1

PACS numbds): 42.65.Tg, 42.81.Dp

I. INTRODUCTION plicated and typically depends on many system parameters.
Different theoretical approaches have been developed to de-
Impressive progress in soliton-based optical data transscribe properties of DM soliton, which include interesting
mission has clearly shown how the fundamental solitornumerical method$l-4], a variational approacf6—11], a
theory can be successfully exploited in important practicafoot-mean-square momentum methétll, 18, multiscale
applications such as high-bit-rate optical communicationsanalysis[12—14, different averaging methods5,16, in-
Practical achievements have stimulated further studies diluding averaging in the spectral domd#,6], and an ex-
soliton dynamics in media with varying coefficients. In this Pansion of the DM soliton on the basis of the chirped Gauss-
Rapid Communication, we present general Hamiltonian aptiermite functions [16,17. Because of the practical

proaches to describe average envelope soliton propagation ffportance of t_he problem, it is of evident interest to develop
a medium with large periodic variations of dispersion. As gdifferent analytical methods to describe the properties of the

specific practical application, we focus here on dispersionPM soliton. A variety of complimentary mathematical meth-
managed(DM) soliton transmission. The traditional path- 0dS can be advantageously used to find an optimal and eco-
averaged optical soliton preserves its shape during propagQQ_m'Cal description of any speqﬂc practical application. In
tion by compensating the fiber dispersion throughthiS Paper we present an averaging approach based on a com-
nonlinearity; only the pulse power oscillates due to periodicPination of the Lagrangian approach and Hamiltonian aver-
amplification of the pulse to compensate for the fiber loss29/Ng-

Rapid oscillations of the power can be averaged out and, as a

rgsult., the s]ow pulse dynamicg in Fhe traditional transmis- || gag|c EQUATIONS IN THE LAGRANGIAN FORM

sion lines yw?h constant _dlsper3|on is governed _by the non- AND THE TWO-PDE APPROXIMATION

linear Schrdinger equation(NLSE). The DM soliton that

occurs in the system with large variations of the dispersion The optical pulse dynamics is governed by the following
differs substantially from the fundamental solitph—18].  partial differential equatiofPDE) with the periodic coeffi-
There are two scales in the DM systems: the fifast dy- cientsd(z) and c(z) (we assume here that both have the
namicg corresponds to rapid oscillations of the pulse widthsame periogl

and power due to periodic variations in the dispersion and

periodic amplification; the secon@low dynamic$ occurs ; 2

due to the combined effects of nonlinearity, residual disper- Azt d(2)Aq+ ec(2)|APA=O, @)
sion and pulse chirping. To describe slow dynamics of the

DM soliton one should average the propagation equatiotvhere we are using notations 1], but setting aside a
over fast oscillations. The small parameter in the problenfmall parametee in c(2z) with newc(z) to be of the order of
(and throughout the papeis e=L/Zy, , with L as a com- one, and arbitrargl(z) =d+(d) ((d)=0). The distance is
pensation period andy, as a characteristic nonlinear scale. normalized by the compensation peribd The action inte-
Overall, the pulse dynamics in these systems is rather congral of this equation is given by
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Assuming thatd,Arg(Q)=0 and introducing new integra-

tion variables, we obtain an averaged actitirere C;

= J1Q¢/?d¢/[]Q|?d¢ and Co=[|Q[*d¢/ [|Q[*d¢)

_ C N2c(z)C
E=fdzrd(z) T_;+4M2)_E%

—2MT4.

Now, observing that the Lagrangian has the fdu¢M,T)
=H(M,T)—-2MT, which can be easily rescaled tqp,q)
=H(p,q)—pg we get forp andqg the Hamiltonian system
[7] with the Hamiltonian

N?c(z)
— €

q

p2
H:d(Z) ?4-2—(12
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in Egs.(3) gives the relatio=p/(21 21 — p?). Now, solv-
ing the equations fop andq, we obtain

) (21&)2 ) 1+(2|g)2.

=2y T2 @

The transformed Hamiltonian takes the form

V21
H(l,£,2)=d(2)| — eN%c(2) —.
(1.£2)=d(2) @ e
Carrying out the transforn§= n+ Ry(z) we finally get
V21

H(l,7,2)={d)I — eN%c(z)

VI+[21(7+Ro(2)]?

The problem is now reduced to the search for minima and
maxima of the averaged Hamiltonian function

V2lc(z)dz
0 V1+[21(n+Ry(2)]*

Note that the last integral in Eq$4) can be evaluated ex-
plicitly [18] if c(z)=const andd is a piecewise constant.

H(1,7)=(d)l — eN? (5)

IV. HAMILTONIAN AVERAGING OF THE PDE

The previous analysis proves to be useful in determining
the averaged quantities that relate to the width and pulse
chirp, without determining the pulse profile. This must be
assumed to compute the constafitsC,, which arise in the

formula for the averaged actidg. In this section we take
the next step in our analysis by averaging the PDE in the
general case, while keeping in the leading order the self-
similar structure obtained in the preceding section. To do
this, we expandsee[16]) a functionQ(&,z) using a com-
plete set of orthogonal chirped Gauss-Hermite functions
Q(£,2)=Z2,bn(2)f1(£) with (fn)gg Efn=Npfn, Np=-1
—-2n, where  normalized fo(x)= exp(— 2/2)Hn(x)/

We will carry out the averaging procedure while preserv-(V2" ”'; 7). HereHy(x) is the nth-order Hermite polyno-
ing the Hamiltonian structure. The minima and maxima ofmial and the coefficients, (z) in the expansion can be found
the averaged Hamiltonian function will correspond to thebY scalar multiplication wittf, . Because the dependence of

fixed points. Consider the HamiltoniaH=d(z)Hq(p,q)
+eH1(p,q,2), which is integrable ife=0. Introducing new
variables (,¢), wherel =

tonian H=d(z)! + eH,(1,£,2), which takes the formH
=eH,(1,7+Ry(2),2) after the transformationé=R(2)

+7 (dRy/dz=d(z)). The critical points of the averaged
HamiltonianH (1, %) give the first approximation to the fixed
points. We now compute the above quantities for the consid-
ered problem. We look for the transformation given implic-

itly by
q:aps(llp)v gz_als(lap)! (3)

where S(1,p) is a generating function, so thatl 2 p?
+q~2. Solving the above equality fay, q=1/\/21 — p?, and

Ho(p,q) and ¢ is chosen so as to ®
keep the Hamiltonian structure, we obtain the new Hamil- | _ z ( !

Q(£&,2) on ¢is now determlned by known functlorfg(g)
after integrating ovet the LagrangiarL in E=fL dzis

db? d(z)
- n|bn|2)

”dz

, db,

dz| T2

(2)

+2 [TZ Tz}b b3 Sh.m

N2c(z)
2T

M
)+4M2d( 2)—

— €

EI K bnbmbl* bi: Vn,m,l k

n,m,l,

+ [T 4Md<z)]2 (Db, =Dy obF ) (N +2).

(6)

using the first equation in Eq¢3), we obtain a generating S, =/ 2f x> ndX, Vi cm=/Tofofmfifildx. Any S,
function S(I,p) =arcsirip/y21]. Then the second equation andVy, |  n can be found in explicit fornﬁlG] Note that the
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derived exact expression is reduced to the Lagrangian froranly the few first terms in the above expansion of the DM
the previous section under the assumptig(z) =const and pulse in the basis of the Gauss-Hermite functions.
Si_o(bnbr,,—b% b)) (n+2)=0 [which corresponds to
the conditiond Arg(Q)=0]. Higher order non-self-similar
corrections to the DM pulse dynamics are accounted through
the functionsb,. To preserve in the leading order the self-
similar structure of the pulse core, we now choose the func- In this section we present an alternative way to average

V. AVERAGING OF THE PDE
IN THE FREQUENCY DOMAIN

tions T(z) andM(z) to be periodic solutions of Eqg. (1) by going into the frequency domain. The averaged
5 equation in the frequency domain has been deriveld ).
d_T — 4d(2)M d_'V' _ @ B c(z)N @ This approach allows one to decompose DM pulse dynamics
a4z~ Ad dz 1 ¢ 717 in the fast evolution of the phase and a slow evolution of the
amplitude. The shape of the DM soliton is then given by a
In this case, the Lagrangidn takes the form nonlocal integral equation. We present here a compact form
. . of the averaged equation that we hope could be useful for
=S ( i, dby by . 9bn d(Z) \.|b |2> practical numerical simulations.
=0 by dz " dz Following [5,6] we take the Fourier transform in E¢L)
eN2 oo and account for the fast oscillations of the phase as
E b,b% S,
+ o
) A(t,z)=J dwq(w,2)exd —iot—iw’Ry(2)]; (8)
eN“c . —o
- 57 n%k bbb bk Vi mt k-

heredRy(z)/dz=d(z) and(Ry)=0. The aim of this trans-
0trormatlon is to eliminate the large coefficieshfrom Eq.(1).

n the new variables the propagation equation takes the form
ig,= 6H/8q* with the HamiltonianH given by

This means that we have reduced the periodic problem f
the original PDE(1) to an infinite set of ordinary differential
equations with periodic boundary conditions, determmlng
the dynamics ob,,. The fast decay ob,, in n makes this
basis very useful in practical applications. By introducing the
notationb,=F, exd —i®,]=/p, exf —iq,], the Lagrangian
can be written in a usual form.(qg;,p1,d2,P2,---.2)
:H(qlipl7q2!p21 ce 72)_2nqnpnv where

H=<d)f w2|q(w,z)|2dw—e—f dw,dw,dw;dw,

iRpAQ .
X 8(w1+ 0y~ w3— wg)€T00, 0,05, 05,

—H= 2 _T))\n Pnt E \/pnpmsn mcos(qm Qn)

here AQ = w?+ w3— w5— w3. To get rid of thes function

eNZe we introduce the linear change of variablel§ 2 w,+ w4,

[ a— 21, =ws+w 2mi=w,— o 2m,=w,— w3, then the
+ V 2 4 3 1 2 1 2 4 3
2T n,mE,I,k PaPmPiPicVn,m. 1 k Hamiltonian takes the form

X €0 Q)+ k= Om—0n)-

_ e} 9 9 B o
Applying the procedure developed in the previous section we H=(d) fﬁwm |a(m.2)[*dm=ec(2) ffmdl dmydm

present the Hamiltonian as | L
H(0y,Py.00.P 2) XeIZRO(mlimz)q(l_ml)q(I+m1)q*(|—m2)q*
1'M1:Y2:M2y -+ -y X(I—’_mz).

d(2)
=Ha.P) == Ho(a.p)+€H1(q,p.2) Though the main results here are formulated in a general

form and can be used for arbitrary dispersion maps, we il-
lustrate the procedure by considering a two-step lossless (
=1) map:d(z)=d,+(d) if 0<z<L,, andd(z)=d,+(d)

for Ly<z<L. Hered;L;+d,(L—L4)=0 and parameter
which is integrable ife=0. Namely, ife=0, p,=const and =d,L, is a characteristic of the strength of the map. Since
On=—AnS2d(s)ds/T?(s). After the transformationq, q(w,z) varies slowly, in the first approximation we can in-
=—N\R(2)+ 7, with R defined from dR/dz=d(z)/T?> tegrate over the period the above equation plagratside
—(d/T?), the Hamiltonian takes the form of the integrals inz [5,6]. This makes it possibl§5,6] to
explicitly express a field at the end of the section as a func-
tion of the input field(i.e., to solve the mapping problém
and to describe an average dynamics. Carrying out this pro-
cedure we get a Hamiltonian integrodifferential equation in
Extrema of this function give a profile of the DM soliton. In the spectral domain describing the slow evolutiorg®,z)
many practical problems it is enough to take into accounf5,6],

= d(z) E AnPn+ €H1(0,p,2),

H=— <d(2)>2 )\npn"'eHl(pna”?n AnR(2),2).
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d9(z,w) oSH ) shape. The general DM soliton solution has the form
= T (d)a(z,w) 0(w,z) =exp(k?)F(w) with the shapeF(w) given by the
equation
Si w—w)(w—w,) :
e donga, (- 0P @)F ()= [ Qoo ™ OB 02)]
pome 2 2 (0w (0w
*
qulqw2+qw1+o)27m1 XleszFt)1+w27w' (9)
with the Hamiltonian A typical solution of this equatiorfand comparisons with

numerics and with the expansion using Gauss-Hermite func-

tiong) is presented in Fig. 1. Note that the solution to this

equation does exist in the region of zero and nornddl (

_ > 2 <0), in agreement with the observations|&].

sin u(m;—m;)] In conclusion, we have developed Hamiltonian averaging

,u(mi—mi) ' to describe the slowaverage dynamics of the dispersion-

managed optical pulse in fiber transmission lines. Derived

In the limit u=0 we just get the Fourier transform of the equations described both the Gaussian core and the exponen-

NLSE. The soliton in this case has the well-known sechtially decaying oscillating tails of DM soliton.

H=(d>j w2|q|2dw—6f dl dm;dmyq(l+m;)

Xq(l=my)g* (I +my)g* (1 —my)

[1] N. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, [10] T. Lakoba, J. Yang, D. J. Kaup, and B. A. Malomed, Opt.

Electron. Lett.32, 55(1995. Commun.149 366 (1998.

[2] J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, [11] E. G. Shapiro and S. K. Turitsyn, Opt. Fiber Techngl151
Electron. Lett.33, 1726(1997. (1998; Opt. Lett.22, 1544(1997).

[3] E. A. Golovchenko, A. N. Pilipetskii, and C. R. Menyuk, Opt. [12] K. H. Spatschek, Yu. Kivshar, and S. K. Turitsyn, Phys. Lett.
Lett. 22, 793(1997. A 204, 269(1995.

[4] M. Wald, I. M. Uzunov, F. Lederer, and S. Wabnitz, Photon. [13] T.-S. Yang and W. L. Kath, Opt. Let22, 985(1997.
Techn. Lett.9, 1670(1997. [14] M. J. Ablowitz and G. Biondini, Opt. Let23, 1668(1998.

[5] I. Gabitov and S. K. Turitsyn, Opt. Let21, 327(1996; JETP  [15] A. Hasegawa, Y. Kodama, and A. Maruta, Opt. Fiber Technol.
Lett. 63, 861(1996. 3, 197(1997.

[6] I. Gabitov, E. G. Shapiro, and S. K. Turitsyn, Opt. Commun.[16] S. K. Turitsyn and V. K. Mezentsev, JETP Le8@7, 640
134, 317 (1996; Phys. Rev. B55, 3624(1997). (1998; S. K. Turitsyn, T. Schaefer and V. K. Mezentsev, Opt.

[7] N. Kutz, P. Holmes, S. Evangelides, and J. Gordon, J. Opt. Lett. 23, 1351(1998.
Soc. Am. B15, 87 (1997. [17] T. Lakoba and D. J. Kaup, Electron. LeB4, 1124(1998.

[8] V. S. Grigoryan and C. R. Menyuk, Opt. Le&3, 609(1998. [18] S. K. Turitsyn, A. B. Aceves, C. K. R. T. Jones, and V. Zhar-
[9] T. Georges, J. Opt. Soc. Am. B5, 1553(1998. nitsky, Phys. Rev. (58, 48 (1998.



